Tag Archives: Lightning strikes

10 Questions to Assess Your Need for Lightning Protection

Most people are unaware that lightning strikes are one of the leading weather-related Lightning Protection 5causes of death in the world. Lightning can warm the air by 27,700 degrees, five times hotter than the surface of the sun.

Did you know you can get struck by lightning 16 km’s away, even when there is not a cloud in the sky? There are approximately 100 lightning strikes each second (6000 per minute) that occurs throughout the world, each carrying up to 30,000 amps of current. Each year in Australia, more than 100 people are injured, with an average of 10 fatalities due to lightning strikes. No one can predict the exact location of each will strike or when it will occur.

We can control the implementation of lightning protection systems where necessary. A good system like the one determined by Erico’s 6 Point plan captures the lightning strikes and transfers the energy to a dependable path to earth. The energy then dissipates in the earth to prevent harm to structures or individuals.

It is possible to use broad guidelines to develop protection required by assessing the known risks of lightning and determine the level of lightning protection (LP) needed for these unexpected strikes.

10 Fundamentally Critical Factors to Assess your Need for LP
1. What is the risk to personnel? 

The odds of being struck by lightning in your lifetime is about 1 in 12,000

Precautions should be taken to prevent worker exposure to lightning. Employers recognise lightning as an occupational hazard and take lightning safety seriously. Locations where personnel risk are high include mine sites, factories, schools, churches, sporting facilities, and hospitals.

2. What is the risk of equipment or structural damage? 

Direct or indirect strikes from Lightning can cause severe electrical-related damage by fire, surge and shock wave damage. Direct strikes cause serious damage to framework, communications, air-conditioning and other exterior structures. Indirect damage is caused by the current traveling by electric grids or through utility lines and resulting in serious damage to electronics, equipment and data.

3. What are the consequential problems of such failure? 

For a business the level of damage caused through direct or indirect strikes can be devastating. It is not only the costly repairs that need to be considered but the downtime, loss of information and data, ability to service the client, production down time and the brands reputation to market.

4. Is the equipment associated with an essential or public service? 

A vital consideration is assets associated with an essential or high-risk service. Services such as railroads, hospitals, airports, and public utilities, must look beyond their own initiatives to consider the public that would be affected by interruptions.

5. What is the potential revenue loss in the time required to restore services? 

Lightning protection systems can prevent detrimental, avoidable downtime and costly repairs. Industries such as mining, manufacturing and essential services could have an immense cost associated to downtime. The investment associated with protecting an asset from lightning strike is a fraction of the potential direct and indirect revenue loss incurred by not being prepared.

6. Does the structure have historical value? 

The historical value of a structure can be priceless depending on the significance of theLightning Protection structure. The possibility of a lightning strike to the structure of a building is around 1:500. Damage is caused by the explosive expansion of air heated to around 30,000ºC, by the ignition of dust, and by flying debris. Electrical circuits may also be damaged by the electro-magnetic field generated.

7. What are the legal implications of providing inadequate protection?

Some industries or assets in some geographical locations, are legally required to provide a certain level of lightning protection. Mining, aviation and essential services have strict lightning protection guidelines. This is a major factor to considering liabilities associated with duty of care.

8. Does the structure or building contain explosive or flammable environments?

Many industries use highly flammable or explosive materials. Fire is a major concern with lightning strikes, adding unstable material to a direct strike or side flashing can be a cocktail for disaster.

9. Can side flashing cause damage to essential electronics?

Electronics are inherently susceptible to lightning strikes in the form of indirect damage. Lightning Strikes Man 1Be aware of electronics that are important and/or vulnerable to damage. A companies file server, for example, is a focal point of most business’ everyday operations. When the file server is incapacitated due to a lightning strike, the operations of an entire company may go down.

10. Will the discharge result in the corona phenomena causing disastrous power surges?

The corona phenomena is an electrical discharge brought on by the ionisation of a fluid such as air surrounding a conductor that is electrically charged.  Corona can create an audible noise that can interfere with communications and cause damage to conductors, transformers and other vital electronics.

Judge the Risks of Lightning-Associated Damage

We have all heard that prevention is better than the cure. The investment in lightning protection is only a fraction of the expense, cost and inconvenience of being unprepared.

Determining the level of lightning protection appropriate for each situation is not always simple. Consider the safety issues, costs and potential damage associated with lightning if you do not have a proper protection system.

These ten questions should help you get started evaluating your potential need for lightning protection.

To help you with direction and advice on lightning protection, refer to WAPP lightning protection experts. They will guide you through the potential need for lightning protection, risk, and more.

For more information on innovations and current lightning protection products, systems and design support click Here or please call (West Australian Power Protection) WAPP on

(08) 9353 5300 or email wapp1@wapp.com.au